Topic:Multimodal Emotion Recognition
What is Multimodal Emotion Recognition? Multimodal emotion recognition is the process of recognizing emotions from multiple modalities, such as speech, text, and facial expressions.
Papers and Code
Jun 18, 2025
Abstract:Facial micro-expressions (MEs) are involuntary movements of the face that occur spontaneously when a person experiences an emotion but attempts to suppress or repress the facial expression, typically found in a high-stakes environment. In recent years, substantial advancements have been made in the areas of ME recognition, spotting, and generation. However, conventional approaches that treat spotting and recognition as separate tasks are suboptimal, particularly for analyzing long-duration videos in realistic settings. Concurrently, the emergence of multimodal large language models (MLLMs) and large vision-language models (LVLMs) offers promising new avenues for enhancing ME analysis through their powerful multimodal reasoning capabilities. The ME grand challenge (MEGC) 2025 introduces two tasks that reflect these evolving research directions: (1) ME spot-then-recognize (ME-STR), which integrates ME spotting and subsequent recognition in a unified sequential pipeline; and (2) ME visual question answering (ME-VQA), which explores ME understanding through visual question answering, leveraging MLLMs or LVLMs to address diverse question types related to MEs. All participating algorithms are required to run on this test set and submit their results on a leaderboard. More details are available at https://megc2025.github.io.
* Micro-Expression Grand Challenge (MEGC) at ACM MM 2025
Via

Jun 14, 2025
Abstract:Multimodal emotion recognition in conversations (MERC) aims to infer the speaker's emotional state by analyzing utterance information from multiple sources (i.e., video, audio, and text). Compared with unimodality, a more robust utterance representation can be obtained by fusing complementary semantic information from different modalities. However, the modality missing problem severely limits the performance of MERC in practical scenarios. Recent work has achieved impressive performance on modality completion using graph neural networks and diffusion models, respectively. This inspires us to combine these two dimensions through the graph diffusion model to obtain more powerful modal recovery capabilities. Unfortunately, existing graph diffusion models may destroy the connectivity and local structure of the graph by directly adding Gaussian noise to the adjacency matrix, resulting in the generated graph data being unable to retain the semantic and topological information of the original graph. To this end, we propose a novel Graph Spectral Diffusion Network (GSDNet), which maps Gaussian noise to the graph spectral space of missing modalities and recovers the missing data according to its original distribution. Compared with previous graph diffusion methods, GSDNet only affects the eigenvalues of the adjacency matrix instead of destroying the adjacency matrix directly, which can maintain the global topological information and important spectral features during the diffusion process. Extensive experiments have demonstrated that GSDNet achieves state-of-the-art emotion recognition performance in various modality loss scenarios.
Via

Jun 12, 2025
Abstract:Recent advancements in Multimodal Emotion Recognition (MER) face challenges in addressing both modality missing and Out-Of-Distribution (OOD) data simultaneously. Existing methods often rely on specific models or introduce excessive parameters, which limits their practicality. To address these issues, we propose a novel robust MER framework, Causal Inference Distiller (CIDer), and introduce a new task, Random Modality Feature Missing (RMFM), to generalize the definition of modality missing. CIDer integrates two key components: a Model-Specific Self-Distillation (MSSD) module and a Model-Agnostic Causal Inference (MACI) module. MSSD enhances robustness under the RMFM task through a weight-sharing self-distillation approach applied across low-level features, attention maps, and high-level representations. Additionally, a Word-level Self-aligned Attention Module (WSAM) reduces computational complexity, while a Multimodal Composite Transformer (MCT) facilitates efficient multimodal fusion. To tackle OOD challenges, MACI employs a tailored causal graph to mitigate label and language biases using a Multimodal Causal Module (MCM) and fine-grained counterfactual texts. Notably, MACI can independently enhance OOD generalization with minimal additional parameters. Furthermore, we also introduce the new repartitioned MER OOD datasets. Experimental results demonstrate that CIDer achieves robust performance in both RMFM and OOD scenarios, with fewer parameters and faster training compared to state-of-the-art methods. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CIDer.
* Submitted to TAC. The code is available at
https://github.com/gw-zhong/CIDer
Via

Jun 11, 2025
Abstract:SER is a challenging task due to the subjective nature of human emotions and their uneven representation under naturalistic conditions. We propose MEDUSA, a multimodal framework with a four-stage training pipeline, which effectively handles class imbalance and emotion ambiguity. The first two stages train an ensemble of classifiers that utilize DeepSER, a novel extension of a deep cross-modal transformer fusion mechanism from pretrained self-supervised acoustic and linguistic representations. Manifold MixUp is employed for further regularization. The last two stages optimize a trainable meta-classifier that combines the ensemble predictions. Our training approach incorporates human annotation scores as soft targets, coupled with balanced data sampling and multitask learning. MEDUSA ranked 1st in Task 1: Categorical Emotion Recognition in the Interspeech 2025: Speech Emotion Recognition in Naturalistic Conditions Challenge.
* Accepted at Interspeech 2025
Via

Jun 12, 2025
Abstract:Speech emotion recognition (SER) in naturalistic conditions presents a significant challenge for the speech processing community. Challenges include disagreement in labeling among annotators and imbalanced data distributions. This paper presents a reproducible framework that achieves superior (top 1) performance in the Emotion Recognition in Naturalistic Conditions Challenge (IS25-SER Challenge) - Task 2, evaluated on the MSP-Podcast dataset. Our system is designed to tackle the aforementioned challenges through multimodal learning, multi-task learning, and imbalanced data handling. Specifically, our best system is trained by adding text embeddings, predicting gender, and including ``Other'' (O) and ``No Agreement'' (X) samples in the training set. Our system's results secured both first and second places in the IS25-SER Challenge, and the top performance was achieved by a simple two-system ensemble.
* Accepeted to Interspeech2025
Via

Jun 12, 2025
Abstract:Micro-expressions (MEs) are subtle, fleeting nonverbal cues that reveal an individual's genuine emotional state. Their analysis has attracted considerable interest due to its promising applications in fields such as healthcare, criminal investigation, and human-computer interaction. However, existing ME research is limited to single visual modality, overlooking the rich emotional information conveyed by other physiological modalities, resulting in ME recognition and spotting performance far below practical application needs. Therefore, exploring the cross-modal association mechanism between ME visual features and physiological signals (PS), and developing a multimodal fusion framework, represents a pivotal step toward advancing ME analysis. This study introduces a novel ME dataset, MMME, which, for the first time, enables synchronized collection of facial action signals (MEs), central nervous system signals (EEG), and peripheral PS (PPG, RSP, SKT, EDA, and ECG). By overcoming the constraints of existing ME corpora, MMME comprises 634 MEs, 2,841 macro-expressions (MaEs), and 2,890 trials of synchronized multimodal PS, establishing a robust foundation for investigating ME neural mechanisms and conducting multimodal fusion-based analyses. Extensive experiments validate the dataset's reliability and provide benchmarks for ME analysis, demonstrating that integrating MEs with PS significantly enhances recognition and spotting performance. To the best of our knowledge, MMME is the most comprehensive ME dataset to date in terms of modality diversity. It provides critical data support for exploring the neural mechanisms of MEs and uncovering the visual-physiological synergistic effects, driving a paradigm shift in ME research from single-modality visual analysis to multimodal fusion. The dataset will be publicly available upon acceptance of this paper.
Via

May 26, 2025
Abstract:While text-based emotion recognition methods have achieved notable success, real-world dialogue systems often demand a more nuanced emotional understanding than any single modality can offer. Multimodal Emotion Recognition in Conversations (MERC) has thus emerged as a crucial direction for enhancing the naturalness and emotional understanding of human-computer interaction. Its goal is to accurately recognize emotions by integrating information from various modalities such as text, speech, and visual signals. This survey offers a systematic overview of MERC, including its motivations, core tasks, representative methods, and evaluation strategies. We further examine recent trends, highlight key challenges, and outline future directions. As interest in emotionally intelligent systems grows, this survey provides timely guidance for advancing MERC research.
Via

May 30, 2025
Abstract:Although speech emotion recognition (SER) has advanced significantly with deep learning, annotation remains a major hurdle. Human annotation is not only costly but also subject to inconsistencies annotators often have different preferences and may lack the necessary contextual knowledge, which can lead to varied and inaccurate labels. Meanwhile, Large Language Models (LLMs) have emerged as a scalable alternative for annotating text data. However, the potential of LLMs to perform emotional speech data annotation without human supervision has yet to be thoroughly investigated. To address these problems, we apply GPT-4o to annotate a multimodal dataset collected from the sitcom Friends, using only textual cues as inputs. By crafting structured text prompts, our methodology capitalizes on the knowledge GPT-4o has accumulated during its training, showcasing that it can generate accurate and contextually relevant annotations without direct access to multimodal inputs. Therefore, we propose MELT, a multimodal emotion dataset fully annotated by GPT-4o. We demonstrate the effectiveness of MELT by fine-tuning four self-supervised learning (SSL) backbones and assessing speech emotion recognition performance across emotion datasets. Additionally, our subjective experiments\' results demonstrate a consistence performance improvement on SER.
Via

May 23, 2025
Abstract:Multimodal emotion recognition analyzes emotions by combining data from multiple sources. However, real-world noise or sensor failures often cause missing or corrupted data, creating the Incomplete Multimodal Emotion Recognition (IMER) challenge. In this paper, we propose Robust Hybrid Diffusion Recovery (RoHyDR), a novel framework that performs missing-modality recovery at unimodal, multimodal, feature, and semantic levels. For unimodal representation recovery of missing modalities, RoHyDR exploits a diffusion-based generator to generate distribution-consistent and semantically aligned representations from Gaussian noise, using available modalities as conditioning. For multimodal fusion recovery, we introduce adversarial learning to produce a realistic fused multimodal representation and recover missing semantic content. We further propose a multi-stage optimization strategy that enhances training stability and efficiency. In contrast to previous work, the hybrid diffusion and adversarial learning-based recovery mechanism in RoHyDR allows recovery of missing information in both unimodal representation and multimodal fusion, at both feature and semantic levels, effectively mitigating performance degradation caused by suboptimal optimization. Comprehensive experiments conducted on two widely used multimodal emotion recognition benchmarks demonstrate that our proposed method outperforms state-of-the-art IMER methods, achieving robust recognition performance under various missing-modality scenarios. Our code will be made publicly available upon acceptance.
Via

May 20, 2025
Abstract:Multi-task learning (MTL) enables the efficient transfer of extra knowledge acquired from other tasks. The high correlation between multimodal sentiment analysis (MSA) and multimodal emotion recognition (MER) supports their joint training. However, existing methods primarily employ hard parameter sharing, ignoring parameter conflicts caused by complex task correlations. In this paper, we present a novel MTL method for MSA and MER, termed Multimodal Mixture of Low-Rank Experts (MMoLRE). MMoLRE utilizes shared and task-specific experts to distinctly model common and unique task characteristics, thereby avoiding parameter conflicts. Additionally, inspired by low-rank structures in the Mixture of Experts (MoE) framework, we design low-rank expert networks to reduce parameter and computational overhead as the number of experts increases. Extensive experiments on the CMU-MOSI and CMU-MOSEI benchmarks demonstrate that MMoLRE achieves state-of-the-art performance on the MSA task and competitive results on the MER task.
* Accepted to ICME 2025
Via
